Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics.
نویسندگان
چکیده
Since the unexpected discovery of the antipsychotic activity of chlorpromazine, a variety of therapeutic agents have been developed for the treatment of schizophrenia. Despite differences in their activities at various neurotransmitter systems, all clinically effective antipsychotics share the ability to interact with D2 class dopamine receptors (D2R). D2R mediate their physiological effects via both G protein-dependent and independent (beta-arrestin 2-dependent) signaling, but the role of these D2R-mediated signaling events in the actions of antipsychotics remains unclear. We demonstrate here that while different classes of antipsychotics have complex pharmacological profiles at G protein-dependent D2R long isoform (D2(L)R) signaling, they share the common property of antagonizing dopamine-mediated interaction of D2(L)R with beta-arrestin 2. Using two cellular assays based on a bioluminescence resonance energy transfer (BRET) approach, we demonstrate that a series of antipsychotics including haloperidol, clozapine, aripiprazole, chlorpromazine, quetiapine, olanzapine, risperidone, and ziprasidone all potently antagonize the beta-arrestin 2 recruitment to D2(L)R induced by quinpirole. However, these antipsychotics have various effects on D2(L)R mediated G(i/o) protein activation ranging from inverse to partial agonists and antagonists with highly variable efficacies and potencies at quinpirole-induced cAMP inhibition. These results suggest that the different classes of clinically effective antipsychotics share a common molecular mechanism involving inhibition of D2(L)R/beta-arrestin 2 mediated signaling. Thus, selective targeting of D2(L)R/beta-arrestin 2 interaction and related signaling pathways may provide new opportunities for antipsychotic development.
منابع مشابه
An Akt/β-Arrestin 2/PP2A Signaling Complex Mediates Dopaminergic Neurotransmission and Behavior
Dopamine plays an important role in the etiology of schizophrenia, and D2 class dopamine receptors are the best-established target of antipsychotic drugs. Here we show that D2 class-receptor-mediated Akt regulation involves the formation of signaling complexes containing beta-arrestin 2, PP2A, and Akt. beta-arrestin 2 deficiency in mice results in reduction of dopamine-dependent behaviors, loss...
متن کاملCNS Drugs 2006; 20 (5): 389-409
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 1. Classification of Atypical Antipsychotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 2. Clinical Effect of Atypical Antipsychotics . . . . . . . . . . . . . . ...
متن کاملSurvey on the interaction effect of dopamine D2 receptor antagonist on morphine-induced polycystic ovary syndrome in rat
Background and Objective: Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in premenopausal women. Opioid drugs, including morphine are effective inducers of the PCOS. Hyperprolactinemia also increases the likelihood of this complication. The dopamine, the inhibitor of prolactin secretion, has receptors in the ovarian tissue. In this study, metoclopra...
متن کاملTemporal and Spatial Transcriptional Fingerprints by Antipsychotic or Propsychotic Drugs in Mouse Brain
Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R) activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce t...
متن کاملMutation of three residues in the third intracellular loop of the dopamine D2 receptor creates an internalization-defective receptor.
Arrestins mediate desensitization and internalization of G protein-coupled receptors and also direct receptor signaling toward heterotrimeric G protein-independent signaling pathways. We previously identified a four-residue segment (residues 212-215) of the dopamine D2 receptor that is necessary for arrestin binding in an in vitro heterologous expression system but that also impairs receptor ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 36 شماره
صفحات -
تاریخ انتشار 2008